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Abstract. While computational methods for solving Stokes-flow problems have existed for some time, these
have depended on specialized codes developed specifically, for this type of problem. This work shows how to
combine traditional applied mathematics and a modern over-the-counter software package MATLAB to solve and
study Stokes flow in a channel with a splitter plate. Specifically exact unidirectional flow solutions are used as
a basis for choosing boundary conditions for MATLAB to anticipate the boundary conditions of a Stokes flow. A
method for selecting zeroth and first-order approximate boundary conditions is presented, along with a suggestion
for finding a second-order approximation. It is also shown that small errors made in choosing the approximate
boundary conditions do not grow as one moves away from the boundary into the interior of the flow. Finally
several computational examples using this approach are presented.
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1. Introduction

The goal of this work is not so much to solve a problem that has never been considered before,
but rather to show how traditional applied mathematics and modern over-the-counter software
packages (in this case, MATLAB ) can be combined conveniently to solve common Stokes-flow
problems. Special packages for solving Stokes-flow problems have been developed over the
years by, among others, Camp and Gipson [1] and Roache [2, Chapter 3]. These are highly
tuned, and may well be faster and/or more efficient, but they are not as widely available as the
general-purpose packages. It is also possible to use finite-difference methods to solve these
sorts of problems (cf., e.g.[3, Section 3.10]), but this in general requires users to write their
own code and to have access to some sort of graphics package.

When the creeping (Stokes) flow equations are solved in two dimensions or axisymmetric
three dimensions by methods that involve in some form the separation of variables, the appli-
cation of no-slip conditions at rigid boundaries, on which a single coordinate takes distinct
values, introduces eigenfunctions that are damped oscillatory in both coordinates and not
orthogonal in the usual sense. For example, if the biharmonic stream functionψ(x, y) is such
that

ψ(x,0) = ψ0, ψ(x,1) = H(x), ∂ψ

∂y
(x,0) = 0= ∂ψ

∂y
(x,1),

whereH(x) denotes the Heaviside function, then, by Fourier transform methods,
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ψ(x, y) = ψ0(1− 3y2 + 2y3)+ (3y2 − 2y3)H(x)+

+sgn(x)<e
∞∑
n=1

αn sin2 αn

sin 2αn − 2αn
9n(y)e

−αn |x|.
(1)

Here the (Papkovitch-Fadle) eigenfunctions in the strip bounded byy = 0 andy = 1, where
ψ = 0= ψ ′, are given [4] by

e±αnx9n(y) = e±αnx
[

sinαny − αny cosαny

sinαn − αn cosαn
− y sinαny

sinαn

]
, (n ≥ 1) (2)

whereα2
n = sin2 αn and<e(αn) > 0. Odd values ofn yield the zeros{λn;n ≥ 1} of sinλ+ λ

and even values ofn yield the zeros{µn;n ≥ 1} of sinµ − µ, both arranged in order of
increasing real part in the first quadrant. Thusλ1 = 4·21+2·25i,λ2 = 10·71+3·10i, etc. and
µ1 = 7·50+ 2·77i, µ2 = 13·90+ 3·35i, etc. This solution (1) displays the exact details of
the symmetric transition from the source at(0,1) to the anticipated far field flows. However,
if instead the above conditions are restricted tox > 0 and end conditions onψ are applied at
x = 0,0< y < 1, then the structure ofψ is unchanged,i.e.,

ψ(x, y) = ψ0(1− 3y2 + 2y3)+ (3y2 − 2y3)+<e
∞∑
n=1

cn9n(y)e
−αn|x|,

but the determination of the complex-valued coefficients may require more than Fourier-
transform methods. The first extensive discussion of such series, in elasticity, was given by
Smith [5] and several authors have subsequently presented progressively less restrictive condi-
tions for completeness. Biorthogonality relations are available but are not directly applicable
to the common cases in which either the end-velocity components or the end stresses are
prescribed. This means that the coefficients are determined by an infinite set of linear equa-
tions and Spence [6] demonstrated an ‘optimal weighting’ scheme that ensures a convergent
truncation. A worse scenario occurs if the infinite strip (channel) has a fixed semi-infinite
barrier or a sudden change of width. Then the form of the stream function in each semi-
infinite region can be written down and uniqueness ensured by requiring bounded velocities.
The Spence scheme can be used to match the velocity and stress components but the edge or
corner singularities cause the convergence to be slow, as discussed by Phillips [7]. Trogdon
and Joseph [8], in their discussion of flow over a slot, avoided this difficulty by including both
of the available eigenfunction expansions in their intermediate region. Similarly, Meleshko [9]
has found that, for rectangular regions with aspect ratio of order one, a pair of Fourier series
suffices for computational purposes.

In the sections below, we attack the barrier problem with a different approach which takes
advantage of modern computational software. The next section describes the flow problem at
hand in general, giving closed-form solutions for various unidirectional-flow conditions. The
final two sections then discuss a computational approach to this problem based on the results
from Section 2. The third section describes our computational approach in general, including
a proof that errors made in selecting the boundary conditions in our approach do not grow in
the interior of the flow. The fourth section presents several specific examples.

2. The flow problem

Consider the unidirectional flow between rigid walls aty = −1, h(≥ 1), where(x, y) are
Cartesian coordinates, at which the stream functionψ and velocityu(= ∂ψ/∂y) have the
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Figure 1. Schematic of the flow-problem domain. The horizontal boundary conditions forψ andu = ∂ψ/∂y at
y = −1 and y= h ≥ 1 and on the splitter plate aty = 0 are shown in the diagram. The dashed vertical boundaries
and the associated boundary conditions are taken to be far enough fromx = 0 so as not to affect the flow. The
uniform flow fieldsu∞ (upstream) andu∞− andu∞+ (downstream) are maintained far fromx = 0.

prescribed valuesψ−1, ψh andu−1, uh, respectively (cf. Figure 1). The flowu∞(y)x̂, wherex̂
is the unit vector in thex direction, is given by

u∞(y) = (uh − u−1)

(
y + 1

h+ 1
− 1

2

)
+ 1

2
(uh + u−1)−

−
[
ψ−1− ψh
h+ 1

+ 1

2
(uh + u−1)

]
6(h − y)(y + 1)

(h+ 1)2
.

(3)

Here the three terms may be, respectively, identified as a shear flow with zero flux due to the
different wall speeds, a uniform flow due to the average wall speed and a pressure driven flow
due to the prescribed flux being different from the flux generated by the uniform flow. By
rewriting (3) in the form

u∞(y) = (uh − u−1)
y

h+ 1
+ uh + hu−1

h+ 1
−

−
[
ψ∗−1− ψ∗h
h+ 1

+ uh + hu−1

h+ 1

]
6(h− y)(y + 1)

(h+ 1)2
,

(4)

where

ψ∗−1 = ψ−1− uh − u−1

2(h+ 1)
, ψ∗h = ψh − h2uh − u−1

2(h+ 1)
,

one observes that equal wall velocities suffice for a study of the disturbance flow generated by
the introduction of a fixed plate aty = 0, x < 0. With uh = u−1 = −U , this occurs when the
flow speed aty = 0, namely

u∞(0) = −U −
[
ψ−1 − ψh
h+ 1

− U
]

6h

(h+ 1)2
, (5)
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is non-zero and or the corresponding stream functionψ∞(y), given by

ψ∞(y) = −U(y + 1)+ ψ−1−

−
[
ψ−1− ψh
h+ 1

− U
]
(3h+ 1− 2y)(y + 1)2

(h+ 1)2
,

(6)

is such thatψ∞(0) differs fromψ0, the stream function value on the plate. So, the second
forcing term is, from (6),

ψ∞(0)− ψ0 = −U + ψ−1− ψ0−
[
ψ−1− ψh
h+ 1

− U
]
(3h+ 1)

(h+ 1)2
, (7)

and evidently the sets of values of the flux and wall velocities in (3), for which the presence of
the semi-infinite barrier creates a disturbance flow, form a two parameter family described by
non-zero values of the vector[u∞(0), ψ∞(0) − ψ0], with only its direction being significant.
Thus, any two flows of type (3) that yield parallel values of this vector, determined by Equa-
tions (5), (7), may be regarded as equivalent because their suitably weighted difference must
be a unidirectional flow with zero velocity aty = 0.

For example, the two flows determined by

ψ0 = ψ−1, ψ−1− ψh = U(h+ 1) (8)

and

ψ0− ψ−1 = (ψ−1− ψh) 3h − 1

(h+ 1)3
, U = 0, (9)

both yield values of[u∞(0), ψ∞(0) − ψ0] that are parallel to[1,1], because their suitably
weighted difference is the flowu = Uy(y+1−h)/h, which is unaffected by the introduction
of the splitter plate.

In terms of pressure gradientsG,G−,G+, the upstream (x →∞) and downstream (x →
−∞) unidirectional velocity profiles (cf. Figure 1) are given by

u∞(y) = −U − G

2µ
(h− y)(y + 1), (10)

u∞− (y) = Uy +
G−
2µ
y(y + 1), −1< y < 0, (11)

u∞+ (y) = −U
y

h
− G+

2µ
y(h− y), 0< y < h, (12)

where

G =
[
ψ−1− ψh
h+ 1

− U
]

12µ

(h+ 1)2
. (13)

G− = 12µ
[
ψ−1− ψ0− 1

2U
]
, (14)

G+ = 12µ

h2

[
ψ0− ψh

h
− 1

2U

]
. (15)
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Thus,

G(h+ 1)3 = G+h3+G− + 6µ(h+ 1)U, (16)

since the pressure gradients are restricted by the need to achieve flux equality.
In the case of symmetric geometry,h = 1 and Equations (5), (7), (11), (12) reduce to

u∞(0) = 1
2U + 3

4(ψ1− ψ−1), (17)

ψ∞(0)− ψ0 = 1
2(ψ1− 2ψ0+ ψ−1), (18)

u∞− (y) = Uy +
[
ψ−1− ψ0− 1

2U
]

6y(y + 1), −1< y < 0, (19)

u∞+ (y) = −Uy +
[
ψ1− ψ0+ 1

2U
]

6y(1− y), 0< y < 1. (20)

Evidently flows withψ∞(0) = ψ0, u∞(0) 6= 0 are equivalent to the even case:

ψ0 = 1
2(ψ1+ ψ−1), u∞− (−y) = u∞+ (y), 0< y < 1, (21)

which consists downstream of a shear flow and parallel pressure driven flow, while flows with
ψ∞(0) 6= ψ0, u∞(0) = 0 are equivalent to the odd case:

U = 0, ψ1 = ψ−1, u∞− (−y) = −u∞+ (y), 0< y < 1, (22)

which is a pressure driven flow out of one channel into the other.
The possible flows that need be considered may be regarded as due solely to the mov-

ing walls and various combinations of downstream pressure gradients. Thetwo casesare
therefore:

(1)U 6= 0 and G+ = 0= G−.
[u∞(0), ψ∞(0)−ψ0] is parallel to[2(h2−h+1), h(h−1)] so its direction depends onh only.

(2)U = 0 and various flux ratios.

ψ∞(0)− ψ0

u∞(0)
= 1

6h

[
3h+ 1− (h+ 1)3

ψ−1− ψ0

ψ−1− ψh
]
= 3h + 1−G−/G

6h
,

which displays a two-parameter (h and the downstream flux ratio) dependence.
In terms of the strip eigenfunctions (2), the upstream(x > 0) flow has the structure

ψ(x, y) = ψ∞(y)+<e
∞∑
n=1

ane
−αnx/(h+1)9n

(
y + 1

h+ 1

)
(23)

and the downstream(x < 0) flows have the similar structures

ψ(x, y) = ψ∞+ (y)+<e
∞∑
n=1

bne
αnx/h9n

(y
h

)
(0< y < h),

ψ(x, y) = ψ∞− (y)+<e
∞∑
n=1

cne
αnx9n(−y) (−1< y < 0), (24)
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in which the far-field flows are given by (10), (11) and (12).
According to [10], the leading terms inψ near the barrier edge at the origin are, after

requiring finite velocities, such that

ψ ∼ r3/2
[
A(cos3

2θ + 3 cos1
2θ)+ B(sin 3

2θ + sin 1
2θ)
]
. (25)

Hence the vorticityω = −∇2ψ and the pressurep are such that

ω ∼ −2r−1/2[3A cos1
2θ + B sin 1

2θ],
p ∼ 2µr−1/2[3A sin 1

2θ + B cos1
2θ]. (26)

In particular, on the barrier(θ = ±π),
ω ∼ ∓2Br−1/2, p ∼ ±6µAr−1/2

and it is the relative strength of these singularities that determines the contact angle
2 arctan(−A/B) because (25) can be rearranged as

ψ ∼ 4r3/2 cos2 1
2θ(A cos1

2θ + B sin 1
2θ), (27)

which also displays the required double zeros inψ at θ = ±π .
The flow problem defined above is amenable to the Wiener-Hopf technique [11] but, unless

the barrier is centrally placed, a matrix factorization is needed and no general method exists
for obtaining this. An accurate approximate method developed by Abrahams [12] has been
applied to this flow by Abrahams and Davis [13] who encountered considerable complications
due to the need to cater for values ofh from 1 to infinity. The next section demonstrates how
a simpler problem can produce, computationally, an acceptable approximation to the flow
discussed above.

3. Computational problem

The PDE Toolbox of MATLAB is extremely effective in solving a wide variety of
two-dimensional boundary-value problems with many types of boundary conditions. To use
PDE Toolbox, one must be able to write a problem as either a second-order equation, or a
second-order system. As we have seen above, the Stokes-flow problem can easily be written
in the latter form. Unfortunately, the types of mixed boundary conditions allowed do not
directly include those normally associated with the Stokes flow in Figure 1: providing the
value of the stream function and its normal derivative, the flow velocity, on each boundary. It
is relatively straightforward, however, to solve the related problem of a second-order system
with Dirichlet boundary conditions,i.e., providing the value of the stream function,ψ , and
the vorticity,ω := ∇2ψ , on each boundary. This, in effect, relaxes the no-slip condition, but
it may be possible to anticipate the boundary values of the velocity,u = ∂ψ/∂y, sufficiently
well that only acceptably small slip velocities occur.

This modified problem has real eigenfunctions that are quite different because of the
second derivative. Thus, (23) and (24) are replaced by

ψ(x, y) = ψ∞(y)+
∞∑
n=1

(Anx + Bn)e−nπx/(h+1) sin

(
nπ
y + 1

h+ 1

)
,
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ψ(x, y) = ψ∞+ (y)+
∞∑
n=1

(C+n x +D+n )enπx/h sin(nπy/h) (0< y < h),

ψ(x, y) = ψ∞− (y)+
∞∑
n=1

(C−n x +D−n )enπx sinnπy (−1< y < 0), (28)

in which the coefficients could be determined by matching atx = 0. Correspondingly, the
matrix to be factorized in the Wiener-Hopf method has a zero off-diagonal element and equal
diagonal elements. Hence, a single-function factorization suffices to solve successively forω

andψ . Double poles in the Fourier transform integral forψ yield thex terms in the above
eigenfunctions.

Despite this contrasting structure, uniqueness ensures that, if the exact boundary values
of ω could be prescribed, the resulting solution would be the required Stokes flow. The two
principal questions that must be addressed are then (i) how specifically should one set up the
computational domain in the PDE Toolbox and give the Dirichlet conditions, particularly the
vorticity, to anticipate the no-slip Stokes condition?, and (ii) how does one know that small
errors in the prescribed values of the vorticityω (relative to the exact values for the Stokes
flow) do not lead to large errors inψ in the interior of the flow?

Let us consider the first question: the issues of the computational domain and finding an
appropriate approximation for the boundary vorticity (denoted asωE). To begin with, because
the domain must be simple, the PDE Toolbox does not allow one to directly define a splitter
plate of zero thickness aty = 0. Instead, one can define a splitter plate of thickness 2δ

centered aty = 0. The value ofδ is then chosen as small as possible within the computational
limits of the computer to be used. For the computations presented here,δ = 0·002. The next
computational issue is the triangulation of the given domain. Fortunately, the PDE Toolbox
will do this automatically. For asymmetric domains, however, the triangulation may be far
from ideal, presumably due to the presence of the singularity at the origin. This difficulty
can be overcome by ‘drawing’ the downstream regions not as single rectangles, but rather
rectangle pairs with symmetric rectangles next to the splitter plate. In the computations below,
the upper downstream region consists of two rectangles, one fromy = δ to y = 0·5, the other
from y = 0·5 toy = h, while the lower downstream region consists of a symmetric rectangle
from y = −δ to y = −0·5, and a final rectangle fromy = −0·5 toy = −1. Finally, the length
of both the upstream channel and the downstream channels must be sufficient to ensure that
the asymptotic behavior is essentially achieved inside the computational domain. The decay
rate can be estimated based on the lowest eigenvalues for each of the problems discussed
above. For the computations presented below, the downstream and upstream computational
limits are, respectively, aty = −10 andy = 10. The boundary conditions at these ends are
given so as not to interfere with the established flow; hence, the normal derivatives of both the
stream function and the vorticity are set to zero.

Next, one must determineωE, the approximate vorticity along the outer boundaries at
y = −1 and y= h, and along the splitter plate. First observe that the upstream and down-
stream vorticity values must correspond to the unidirectional velocity profiles given in (10),
(11) and (12). Indeed, these far-field values can be thought of (and used) as zeroth-order ap-
proximations to the horizontal-boundary and splitter-plate vorticities. Somewhat surprisingly,
as we shall see in the examples below, even these zeroth-order approximations give a very
reasonable approximation to the stream functionψ . For the record, one should also note that
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the values ofψ andω used on the splitter plate are those of the unidirectional velocity profiles
at y = ±δ, not aty = 0. This choice implies that the computed solution is extended by the
unidirectional flow solutions in the layers−δ < y < 0 and 0< y < δ. To match these thin
layers of unidirectional flow, the boundary conditions on the very short vertical ‘boundary’
near the origin (x= 0, −δ < y < δ) are the same as on the outer vertical boundaries,
namely, the normal derivatives of both the stream function and vorticity are set equal to zero.
Our decision to use these boundary conditions on the splitter plate is based on our desire to
match the unidirectional-flow problem as closely as possible. One could also consider using
no-flow boundary conditions along the splitter plate aty = ±δ, thereby giving the splitter
plate physical thickness in the computational problem. As we should see in the examples
below, this is very close to what we used, provided thatδ � 1.

To obtain a first-order approximation for these vorticities, one can use the eigenvalue cal-
culations discussed above. Even though none of the eigenvalue problems exactly correspond
to the region where the channel splits, one can use the lowest eigenvalues as a starting point
for numerical experiments to anticipate the no-slip conditions. One can also confirm these
results by replacing the Dirichlet conditions along the horizontal boundaries and the splitter
plate by Neumann conditions specifying the normal derivatives of the stream function and
the vorticity match those of the unidirectional velocity profiles. The problem resulting from
using these Neumann conditions will be termed theassociated Neumann problem. Based on
all this, first-order approximations for the wall and splitter-plate vorticities of the following
forms were used:

ωE = ω∞± + exp(α−x)(ω∞ − ω∞± )/2 (x < 0)

ωE = ω∞ − exp(−α+x)(ω∞ − ω∞± )/2 (x > 0), (29)

whereω∞, ω∞± are the far-field vorticities discussed above, andα+ andα− are determined in
each case by considering both the eigenvalue problems and the associated Neumann problem.
Second-order approximations, which take into account the small oscillations seen both in the
eigenvalue problems and the associated Neumann problems, could also be computed but will
not be considered here.

Now we shall consider the second question: since the exact value of the Stokes flow vortic-
ity is unattainable using the above procedure, it is useful to show that errors in these boundary
values cannot propagate. Suppose that(ψ, ω) is the exact solution of the Stokes system with
ω(x,−1) = ω0(x) the (unknown) value of the vorticity on the lower wall (a similar argument
can be given for the splitter plate and the upper boundary). Introduce a small error by setting
ωE(x,−1) = ω0(x) + ε(x) and let(ψE, ωE) be the solution of the approximate problem.
Suppose also that‖ ε ‖∞= ε∞ � 1. Then the errorE(x, y) = ωE − ω satisfies

∇2E = 0 (y > −1), E(x,−1) = ε(x). (30)

The splitter plate aty = 0 and the wall aty = 1 are being ignored here because the smallness
of ε(x) enables the problem to be localized near the wall aty = −1. Thus, let

W = E

ε∞
, X = x√

ε∞
, Y = y + 1√

ε∞
, W0(X) = ε(x)

ε∞
.

Then

∂xxE = ∂XXW, ∂yyE = ∂YYW, ‖ W ‖∞= 1
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Figure 2. Stream lines and flow field forh = 1, U = 2 andG+ = 0 = G−. Zeroth-order boundary/splitter
approximation. Twenty interior stream lines.

and the normalized problem is

∇2W = 0 (Y > 0), W(X,0) = W0(X). (31)

Here the effect of the rescaling is that the barrier and the upper wall become more distant
as the error diminishes. This allows, whenε∞ is sufficiently small, the solution of (31) for
moderateY to be expressed in terms of the Poisson kernel,

P(X, Y ) = 1

π

Y

X2+ Y 2
,

in the form

W(X, Y ) = (W ∗ P)(X, Y ) =
∫ ∞
−∞

W0(ξ)P (X − ξ, Y ) dξ.

An application of Young’s inequality (Folland [14, p.14]) (with respect toX) yields

‖W(·, Y )‖2 ≤ ‖W0‖1‖P(·, Y )‖2 = ‖W0‖1
π

[∫ ∞
−∞

(
Y

X2+ Y 2

)2

dX

]1/2

= ‖W0‖1
π

1√
Y

[∫ ∞
−∞

dζ

(ζ 2+ 1)2

]1/2

=
√
ε∞√
2π

‖W0‖1√
y + 1

.

So, for a given value ofy,

‖E(·, Y )‖2 = ε∞‖W(·, Y )‖2 ≤ ε
3/2
∞√
2π

‖W0‖1√
y + 1

,

which demonstrates a super-linear decrease in error inside the channel asε∞ ↘ 0. Thus,
small inaccuracies on the boundary cause even smaller errors in the interior. Note that one can
increase the power on theε-factor toε2−1/p

∞ by replacing the two-norm in Young’s Inequality
with thep-norm.

Since the corresponding stream functionψE is determined fromωE by
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Figure 3. Stream lines and flow field forh = 1·2, U = 2 and G+ = 0 = G−. Zeroth-order boundary/splitter
approximation. Twenty interior stream lines.

∇2ψE = −ωE (y > −1), ψE(x,−1) = ψ−1(x),

and the fundamental solution of Laplace’s equation can be used to expressψE in terms ofωE,
the bound on the error inω carries over to a bound on the error inψ , as required.

4. Computational examples

This section presents several examples of Stokes flow computed using the techniques de-
scribed in Section 2∗. As discussed above, for all computations the splitter plate lies along the
negativex-axis, while the upstream and downstream computational limits are aty = 10 and
y = −10, respectively. In each of the plots below, the vertical line atx = 0 and the horizontal
lines aty = ±0·5, x < 0 are part of the skeletal structure used to define the domain in PDE
Toolbox; these lines arenot part of the solution. Finally letµ = 1 throughout.

The first four plots show stream lines and flow fields for the first case described in Sec-
tion 2∗ . HereU = 2 andG+ = 0 = G− while h = 1, 1·2 or 3. For each plot, there are
twenty-two stream lines (twenty in the interior), evenly distributed fromψ−1 = 1 on the lower
boundary toψh = −h on the upper boundary. Recall that the values of the stream function
are also prescribed to be constant on the splitter plate as well as on the upper and lower
boundaries, but that the no-slip conditions are not directly prescribed. Instead, the values of
ω are prescribed to anticipate the no-slip conditions. So the upper and lower boundaries and
the splitter plate are stream lines, and the issue is whether the vectors of the flow field have a
constant length of|U | on the outer boundaries nearx = 0, and are zero on the splitter plate.

For the first two plot (h = 1 andh = 1·2), the zeroth-order approximation for the boundary
condition forω is used, so there is actually a jump in the value ofω on both the lower and
upper boundary atx = 0. Nevertheless, on the scale of the plots in Figure 2 and Figure 3,
it is difficulty or impossible to detect the error in the stream function or flow field caused
by this jump. No flow can be seen at the splitter plate, and the flow field appears to have

∗Full-colour versions of all plots are available at htt: //www.WPI.edu/∼bach/Stokes
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Figure 4. Stream lines and flow field forh = 3, U = 2 andG+ = 0 = G−. Zeroth-order boundary/splitter
approximation. Twenty interior stream lines.

Figure 5. Stream lines and flow field forh = 3, U = 2 andG+ = 0 = G−. First-order boundary/splitter
approximation. Twenty interior stream lines.

constant length on the outer boundaries. The most obvious errors are at the upstream boundary
(x = 10) whenh = 1; here the vector field appears not to satisfy the upstream boundary
condition. Some stream lines also are less smooth, tending to have small oscillations. Both of
these problems are likely the result of the relatively sparse computational mesh near the up
stream boundary. The sparseness of the mesh results both from the computer measuring little
error in the solution here relative to the area near the origin, and from way the domain was
initially defined. Careful examination of the plot reveals that the up-stream domain (x > 0)
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Figure 6. Stream lines and flow field forh = 3, U = 0, ψ0 = 0, ψ−1 = 1
2 andψh = −1

2. Zeroth-order
boundary/splitter approximation. Twenty interior stream lines.

Figure 7. Stream lines and flow field forh = 3, U = 0, ψ0 = 0, ψ−1 = 1
2 andψh = −1

2. First-order
boundary/splitter approximation. Twenty interior stream lines.

is composed of a single rectangle while the downstream domain is composed of four rectan-
gles. This domain structure affects the initial triangulation and hence all uniform refinements
leading to there always being a finer mesh downstream. Interestingly, the asymmetries in the
later plots (h= 1·2 andh = 3) tended to alleviate this problem. Forh = 1·2, the tiny arrows
near the splitter plate are in fact just below the splitter plate. They appear here and not in the
symmetric case because of the way PDE Toolbox decides to choose base points for the flow
field. It is also worth noting that forh = 1·2, PDE Toolbox plots only one flow vector on the
lower boundary; this seems to be simply an error in the plotting software.
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For the third plot (h = 3), it is no longer quite the case that zeroth-order approximation
is sufficient to avoid an observable error on the scale used here. Now there is a small but
perceptible error when the zeroth-order approximation is used (cf. Figure 4). In particular,
note the slight difference in the gap between arrows of the flow field on the lower boundary.
To reduce this error, the first-order approximation described in the previous section is used on
both the outer boundaries and the splitter plate. When both the associated Neumann problem
and the eigenvalues are considered, an appropriate approximation forωE is given by (29) with
α+ = α− = 1·4. The result is a similar, but slightly more accurate plot shown in Figure 5;
in particular, note that the boundary arrows now appear to be of uniform length. Note that the
flow in the lower portion of the upstream channel is pulled upward as it approaches the splitter
plate and then tends to ‘bounce’ off as it enters the downstream channel. The slight deviation
in the boundary arrows from the horizontal again comes form a plotting or rounding error
in PDE Toolbox. Sinceψ is defined to be constant on these boundaries, all boundary arrows
should be horizontal, even ifω is chosen poorly.

The last two plots show stream lines and flow fields for the second case described in
Section 2. HereU = 0, ψ0 = 0, ψ−1 = 1

2 andψh = −1
2. So there is now unit total flux

upstream, with equal portions entering each downstream channel. Then, sinceh = 3 in both
plots, the pressure gradients areG = 3

16,G− = 6 and G+ = 2
9.

Figure 6 displays the zeroth-order approximation for this second case; as in the first case,
when h = 3 there is a small but perceptible error on the outer boundaries. A first-order
approximation is again found by considering the eigenvalues and the associated Neumann
problem. In this case, the first-order boundary conditions forω are given by (29) withα+ =
2·3 and α− = 3·3. Figure 7 shows this first-order solution. SinceU = 0, there should now be
no flow on any boundary or on the splitter plate; the small but uniform flow seen in Figure 7
again indicates the limits of MATLAB and PDE Toolbox. Notice that, as in the first case, a
portion of the flow ‘bounces’ off the splitter plate, this time from above.

5. Concluding remarks

The work presented here demonstrates how MATLAB (and indeed many other over-the-counter
software packages) can be used to handle problems for which the package would not at first
seem to be appropriate. If one tries to ‘force’ the Stokes-type boundary conditions directly into
MATLAB , the results are very poor. But in this case, and in many others, there is the possibility
of posing a slightly different problem that the software can handle and that in fact leads to the
solution of the original problem.

This flow problem was specifically chosen for thisPractical Asymptoticsissue of this
Journal. Evidently, the known structure of the stream function has played a key role in formu-
lating the approximate boundary conditions for the MATLAB software. The problem nicely
demonstrates how such information could be used in further applications. In addition, the
convergence proof is asymptotic in nature and demonstrates another use of asymptotics in
mathematics and science.
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